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Abstract – The particle filter provides a general so-
lution to the nonlinear filtering problem with arbitrarily
accuracy. However, the curse of dimensionality pre-
vents its application in cases where the state dimension-
ality is high. Further, estimation of stationary parame-
ters is a known challenge in a particle filter framework.
We suggest a marginalization approach for the case of
unknown noise distribution parameters that avoid both
aforementioned problem. First, the standard approach
of augmenting the state vector with sensor offsets and
scale factors is avoided, so the state dimension is not
increased. Second, the mean and covariance of both pro-
cess and measurement noises are represented with para-
metric distributions, whose statistics are updated adap-
tively and analytically using the concept of conjugate
prior distributions. The resulting marginalized particle
filter is applied to and illustrated with a standard exam-
ple from literature.

Keywords: Unknown Noise Statistics, Adaptive Fil-
tering, Marginalized Particle Filter, Bayesian Conju-
gate prior

1 Introduction
State space models are widely used in many engineering
applications. Depending on the nature of the problem,
these models could involve simple linear equations or
complex nonlinearities. Estimating the unknown state
based on the available measurements is an important
and a well studied subject in the literature. Most of
the estimation algorithms rely on the prior knowledge
of the model and its parameters. In many scenarios,
the model parameters, especially the noise/disturbance
parameters, might not be known a priori and should
be estimated on the run. This problem is referred to
as noise adaptive filtering in the literature. The solu-
tion is typically given by the joint estimation of noise
parameters together with the dynamic state. One very
common approach is to augment the state vector with
unknown parameters and redefine the problem as a fil-
tering problem. This approach has readily been applied

in the particle filtering context [16]. Such an approach
has some major disadvantages as it requires artificial
dynamics for the static parameters and it leads to an
increase in the state dimension which is not preferable
for particle filters. Many alternative approaches have
also been proposed to circumvent such issues. In [3],
the different approaches have been systematically clas-
sified into the following catagories: Bayesian, maximum
likelihood, correlation and covariance matching. Tra-
ditionally the problem has been addressed for linear
systems (see e.g., [1],[8]). A correlation based adaptive
Kalman filter for noise identification using the weighted
least squares criterion has been proposed in [2], while an
asymptotic (in time) maximum likelihood estimate has
been proposed in [5]. On the other hand, the Bayesian
approach has been used, for example, in [6] and [7].
In [6], the nonstationary noise statistics are estimated
using the so called IMM method, while an adaptive
Kalman filter based on variational Bayesian methods
is used in [7]. An adaptive sequential estimation with
unknown noise statistics has been proposed in [4]. Esti-
mation of state dependent covariance matrix using the
marginalized particle filter approach has been consid-
ered by [9]. Here the covariance matrix is treated as
additional state, for which a state transition equation
has been defined.

In this article, we propose an efficient method in a
Bayesian framework for approximating the joint density
of the unknown parameters and the state based on the
particle filters and marginalization concepts [10],[11].
Analytical substructures in the joint distribution of the
state and the model parameters are important in apply-
ing the marginalization idea. We assume suitable prior
distributions for the unknown noise parameters. Con-
ditional on the particle filter output for the state, we
define analytical posterior distribution for the unknown
noise parameters and propagate the hyper-parameters
of the posterior recursively. Among the previous stud-
ies, [14] and [15] are the most related ones to our work.
The system considered in [15] is a specific model for a



binary output and it is partially linear. The approach
in [14] reflects a more general framework but only non-
informative prior is used and it aims at estimating the
state rather than the unknown parameters. In both
studies, the noise sequences are assumed to have zero
mean. The methodology we describe in this article de-
fines a more general framework and it is applicable to
noise sequences with unknown mean. In [13], estimat-
ing the unknown model and the noise parameters is
aimed at by using the marginalization idea. Sampling
for the unknowns is required in the update steps. In
the method we propose, we integrate out the unknown
parameters to compute the relevant distributions which
results in a more efficient algorithm. Our experiments
show that the proposed method is capable of estimat-
ing the unknown parameters of the measurement noise
as well as the process noise even for highly nonlinear
models.

2 Problem Definition
Consider the following nonlinear discrete time state
space model relating a hidden state xt to the obser-
vation yt

xt = ft(xt−1) + vt (1)
yt = ht(xt) + wt (2)

Here t denotes the time index. f(.) and h(.) are possibly
nonlinear functions of the state vector xt. vt and wt are
mutually independent Gaussian noise sequences with
unknown mean and covariances.

vt
i.i.d.∼ N (µv, Σv), (3)

wt
i.i.d.∼ N (µw, Σw). (4)

The means and the covariances of the noise sequences
are unknown and denoted by θ.

θ , [θv, θw] , [µvΣv, µwΣw]. (5)

The typical problem here is to infer sequentially the
unobserved state xt together with the unknown noise
statistics based on a set of observation y0:t. This prob-
lem appears quite naturally in many practical appli-
cations of interests where the exact knowledge of the
noises are unavailable. The main difficulty arises from
the fact that the estimation of the hidden state also
depends on the unknown noise parameters θ. We aim
to address this problem by estimating sequentially the
joint density of the unknown noise parameters (µv, Σv,
µw and Σw) and the state sequence x0:t given the set
of measurements y0:t.

3 Methodology
The method we present here heavily relies on the
marginalization concept. We make use of the conjugate

priors1 for the unknown parameters such that, it is suf-
ficient to keep only the hyper-parameters of the poste-
rior distribution for each particle in order to express the
joint distribution of the state and the unknown noise
parameters. Moreover, within the same approach, it is
possible to integrate out the unknown parameters and
derive the marginal density for the state easily.

3.1 Posterior distribution for the conju-
gate prior

For multivariate Normal data with unknown mean
µ and covariance Σ, a Normal-inverse-Wishart dis-
tribution defines a conjugate prior. Let us de-
note it as [µw, σw] ∼ NiW(k0, µ0, v0, Λ0). Assuming
Normal-inverse-Wishart distribution with parameters,
(k0, µ0, v0, Λ0) defines a hierarchical Bayesian model
given below:

z ∼N (µ, Σ) (6)

µ|Σ ∼N (µ0,
Σ
k0

) (7)

Σ ∼ iW(v0, Λ0) (8)

where iW(.) denotes Inverse Wishart distribution. The
joint density of (µ, Σ) is of the form

p(µ, Σ) = NiW(k0, µ0, v0, Λ0) (9)

=
1
c
|Σ|−((

v0+d
2 )+1)

× exp(−1
2
tr(Λ0Σ−1)− k0

2
(µ− µ0)T Σ−1(µ− µ0)),

(10)

where

c =
2v0d/2Γd(v0/2)(2π/k0)d/2

|Λ0|v0/2
. (11)

The parameters µ0 and k0 define the prior mean and
the number of prior measurements, while v0 and Λ0

define the degrees of freedom and the scale matrix for
the inverse-Wishart distribution. Notice that the mean
and the covariance are dependent. A larger covariance
results in a larger variance on µ whereas a smaller co-
variance will pull the mean towards µ0. Further, the
Gaussian distribution for z becomes a t-distribution for
a NiW prior,

p(z|µ, v, Λ) = tv−d+1(µ,
(k + 1)

k(v − d + 1)
Λ) (12)

3.2 Recursive updates of the conjugate
prior

Suppose we observe a set of m observations, {zt}m
t=1

from a multivariate Gaussian distribution for which
1A family of prior distributions is conjugate to a particular

likelihood function if the posterior distribution belongs to the
same family as the prior.



we assumed a normal-inverse-Wishart prior for the un-
known mean and variance. Via conjugacy, the poste-
rior distribution of the unknown parameters is again a
normal-inverse-Wishart distribution with the updated
hyper-parameters. The hyper-parameters of the poste-
rior distribution are updated as follows [12],

µm+1 =
k0

k0 + m
µ0 +

m

k0 + m
z̄m (13a)

Λm+1 = v0Λ0 + Sm +
k0m

k0 + m
(z̄m − µ0)(z̄m − µ0)T

(13b)

km+1 = k0 + m (13c)
vm+1 = v0 + m (13d)

where

z̄m =
1
m

m∑
t=1

zt, (13e)

Sm =
m∑

t=1

(zt − z̄)(zt − z̄)T . (13f)

3.3 Marginalization in nonlinear filter-
ing

Let us define NiW priors for the unknown process
noise and the measurement noise sequences of the sys-
tem defined by (1) and (2). Let Φ0 = [φw

0 φv
0] denote the

initial hyper-parameters describing the prior distribu-
tions (φw

0 = [(kw
0 , µw

0 , vw
0 , Λw

0 )] for the process noise and
φv

0 = [(kv
0 , µv

0, v
v
0 , Λv

0)] for the measurement noise). Our
aim is to approximate the joint density for p(x0:t, θ|y0:t)
and allow marginalization if possible. The joint distri-
bution of the states and the unknown parameters can
be decomposed into conditional distributions:

p(x0:t, θ|y0:t) = p(θ|x0:t, y0:t)p(x0:t|y0:t). (14)

Suppose we approximate the distribution p(x0:t|y0:t) by
a set of N particles and their weights as

p(x0:t|y0:t) '
N∑

i=1

ω
(i)
t δ

x
(i)
0:t

(.). (15)

For each particle we can compute analytical expressions
for the posterior distribution of the unknown parame-
ters. Notice that given the state trajectory x0:t and the
measurements y0:t, the measurement and process noise
parameters become independent. Hence the hyper-
parameter update for the posterior distributions can be
done separately. The posteriors follow normal-inverse-
Wishart distribution and the hyper-parameters are up-
dated according to the equations (13a)-(13d). The
following expressions are substituted with the pseudo

measurement zt in the update equations.

zv
t ,x

(i)
t − ft(x

(i)
t−1) for the process noise update

(16)

zw
t ,yt − ht(x

(i)
t ) for the measurement noise update.

(17)

Using the sequential importance sampling scheme for
propagating the particle approximation (15) leads to
the standard weight update equation:

ω
(i)
t = ω

(i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1, yt)
, (18)

where q(.) is the importance distribution from which
we sample x

(i)
t .

3.4 Likelihood marginalization

In order to compute the likelihood p(yt|x(i)
t ), we can

utilize the posterior distribution of the unknown param-
eters that we computed for each particle. One impor-
tant advantage of using conjugate priors reveals itself
here as it is possible to integrate out unknown noise
parameters as they follow normal-inverse-Wishart dis-
tribution.

p(yt|xt) =
∫

p(yt|θv, x0:t)p(θv|x0:t)dθv. (19)

In accordance with the notations described in equations
(13a)-(13d), the resulting predictive distribution is a
multivariate Student-t distribution as follows from (12),

p(zt|z1:t−1, k, µ, v, Λ) = tvt−d+1(µt,
(kt + 1)

kt(vt − d + 1)
Λt)

(20)

where tv(µ, λ) is the student-t distribution with v de-
grees of freedom, located at µ with scale parameter λ.
The likelihood can be computed using the above ex-
pression together with (17).

3.5 State prediction

In most of the cases it is not possible to sample from
the optimal importance distribution. The state transi-
tion density p(xt|xt−1) can be used as the importance
distribution. Once again the unknown process noise
can be integrated out.

p(xt|x0:t−1) =
∫

p(xt|θw, x0:t−1)p(θw|x0:t−1)dθw.

(21)

The resulting predictive distribution is a multivariate
Student-t distribution similar to (12).



3.6 Posterior distribution for the noise
parameters

The marginal posterior density of the unknown pa-
rameters can be computed by integrating out the states
in the joint density.

p(θ|y1:t) =
∫

p(θ|x0:t, y1:t)p(x0:t|y1:t)dx0:t

≈
N∑

i=1

ω
(i)
t p(θ|x(i)

0:t, y1:t). (22)

Then the estimate of the unknown parameters could be
computed according to a chosen criterion. As an exam-
ple, according to minimum mean square error (MMSE)
criterion, the noise variance estimate at time t could be
computed as

Σ̂t =
N∑

i=1

ω
(i)
t

Λ(i)
t

vt − d− 1
, (23)

where the weights are inherited from the particles.

3.7 Marginalized particle filter

In the proposed method, each particle keeps its own
estimate for the parameters of the unknown process
noises and measurement noise. In the importance sam-
pling step, the particles use their own posterior distri-
bution of the unknown parameters. The weight update
of the particles is made according to the measurement
likelihood. It is our expectation that the particles, keep-
ing the unknown parameters which best explains/fits
to the observed measurement sequence will survive in
time. The methodology followed here is described in
the next paragraph as a pseudo code.

4 Simulations
We use the following benchmark scalar nonlinear time
series model for our illustrations:

xt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt, (24)

yt =
x2

t

20
+ wt, vt ⊥ wt, t = 1, 2, . . . (25)

where vt ∼ N(0,Σv) and wt ∼ N(0,Σw) and both Σv

and Σw are unknown. For simulated data, we use Σv =
10 and Σw = 1.

In the first subsection, we assume that only the vari-
ances of the noises are unknown, whereas in the second
subsection, we consider both the means and the vari-
ances to be unknown.

4.1 Unknown Variances

We note that when the mean of the Gaussian noise
is known, the conjugate prior for the covariance matrix
is given by Inverse Wishart distribution (iW), which

Algorithm:

• Initialization:

• For each particle i = 1, .., N do

– Sample x
(i)
0 ∼ p0(x0)

– Set initial weights ω
(i)
0 = 1

N

– Set initial noise hyper-parameters [φw
0 φv

0] cor-
responding to each particle

• Iterations:

• For t = 1, 2, . . . do

– For each particle i = 1, .., N do

∗ sample x
(i)
t ∼ q(x(i)

t |yt, x
(i)
t−1)

– For i = 1, .., N , update the weights

ω̃
(i)
t = ω

(i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1, yt)

– Update hyper-parameters of the process
noise, using the pseudo measurement zv

t =
x

(i)
t − ft(x

(i)
t−1) (Equations (13a)-(13d)).

– Update hyper-parameters of the measure-
ment noise, using the pseudo measurement
zw
t = yt − gt(x

(i)
t ) (Equations (13a)-(13d)).

– Normalize weights, ω
(i)
t = w̃

(i)
t∑N

i=1 w̃
(i)
t

.

– Compute Neff = 1∑N
i=1(ω

(i)
t )2

.

∗ If Neff ≤ η, Resample the particles. Copy
the corresponding hyperparameters and
set ω

(i)
t = 1/N .

for the scalar case reduces to Inverse Gamma distri-
bution (iG) [12]. At time step t = 0, we set the
priors as p(x0) = N(0, 5), p(Σv) = iG(α0, β0) and
p(Σw) = iG(λ0, δ0). We take α0 = 2.01, β0 = 5,
λ0 = 2.01 and δ0 = 5. The hyper-parameters update
equations for the iG are shown in the appendix A. In
the particle filtering step, the state transition density is
taken as the proposal and the resampling is done when-
ever the effective sample size falls below the one-third of
the original sample size. The expressions for the mean
and variance of the posterior are shown in appendix B.
Realizations of the estimates of Σv and Σw with parti-
cle size N = 500 and N = 5000 are respectively shown
in Figures 1–2. We observe that the estimation proce-
dure works quite well. Next, keeping the particle size
N = 5000, we repeat the estimates over 100 Monte
Carlo runs. The Monte Carlo average of the estimates
of Σv and Σw are shown in Figures 3–4. Here, the
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Figure 1: Posterior estimate of Σv and Σw visualized
via mean value and two standard deviation bounds.
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Figure 2: Posterior estimate of Σv and Σw visualized
via mean value and two standard deviation bounds.
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Figure 3: Estimated Σv with 5000 particles over 100
Monte Carlo runs
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Figure 4: Estimated Σw with 5000 particles over 100
Monte Carlo runs

estimates appear to be slightly biased. We also com-
pute the root mean squared error (RMSE) estimates of
Σv and Σw at each time step t (over M = 100 Monte

Carlo runs) given by
(

1
M

∑M
j=1(ẑ

j
t − zj

t )2
) 1

2
. Here zj

t is

the true parameter for time t in the j’th run and ẑj
t is

the corresponding estimate. The results are shown in
Figures 5–6. Next, for a typical realization with 5000
particles, we also plot the posterior densities p(Σv|y1:T )
and p(Σw|y1:T ) at final time T = 1000. This is shown in
Figure 7. Subsequently, we compute the mean and the
maximum a posteriori (MAP) estimates of both Σv and
Σw at final time step T = 1000. Here, MAP is obtained
by maximizing the argument of the respective posterior
density. Each posterior is given by the weighted mix-
ture of inverse Gamma densities. We maximize the pos-
terior numerically using Matlab’s fminunc command,
with the starting value taken to be the corresponding
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Figure 6: RMSE of Σw with 5000 particles over 100
Monte Carlo runs
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Figure 8: RMSE of Σv at final time step versus number
of particles

mean estimate. The RMSE estimates over 100 Monte
Carlo runs for different particle sizes are shown in Fig-
ures 8–9. We observe that the mean estimate performs
better for Σv while both MAP and mean estimates are
similar for Σw.

4.2 Unknown Means and Variances

Here, we investigate the case where both the mean and
the variance of the noise sequences are unknown. The
same system defined by the equations (24)-(25) is used
once more. The true parameters of the noises are set to:
µv = 3, σ2

v = 4, µw = 1, σ2
w = 6. NiW distribution is

used as the prior and the initial hyper-parameters are
set to φw

0 = [(kw
0 , µw

0 , vw
0 , Λw

0 )] = [(5, 0, 5, 10)] for the
process noise and φv

0 = [(kv
0 , µv

0, v
v
0 ,Λv

0)] = [(5, 0, 5, 10)]
for the measurement noise. In Figure 10, the estimates
for the measurement and the process noise covariances
and the means are depicted together.

5 Conclusions and Discussions
A new method for estimation of unknown noise pa-

rameters in general state space models is presented in
this article. The method is defined in Bayesian frame-
work where we define conjugate priors for the unknown
noise parameters. We also make use of the marginal-
ization idea in order to keep the algorithm implemen-
tation simple and efficient, with analytic posterior dis-
tributions for the noise parameters. The methodology
described here is generic and can be extended and gen-
eralized in several ways: (i) A larger class of noises from
the exponential family with suitable conjugate priors
can be used. (ii) The independence assumption on the
process noise and the measurement noise sequences can
be relaxed. (iii) The principle of exponential forgetting
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can be applied to allow for time varying noise charac-
teristics. Such modifications are left as future work.
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A Updating hyper-parameters
of Inverse Gamma distribu-
tion

Suppose the prior p(Σ) ∼ iG(a0, b0). Note that iG is a
special case of iW for scalar variables. If the observa-
tions X = [x1, . . . , xn] are independent Gaussian vari-
ables drawn from N(µ, Σ) distribution, then conjugacy
implies that the posterior distribution p(Σ|X) is also
inverse Gamma distributon, i.e. p(Σ|X) ∼ iG(an, bn),
where the hyper parameters can be updated as

an = a0 +
n

2
= an−1 +

1
2
, (26a)

bn = b0 +
1
2

n∑

i=1

(xi − µ)2 = bn−1 +
(xn − µ)2

2
. (26b)

B Mean and variance for the
posterior of Σ

The posterior of Σ at time step t is computed as

p(Σ|y1:t) =
∫

p(Σ|x0:t, y1:t)p(x0:t|y1:t)dx0:t

≈
N∑

i=1

p(Σ|x(i)
0:t, y1:t)ω

(i)
t , (27)
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surement and the process noises. The algorithm is run
with 5000 particles.

where p(Σ|x(i)
0:t, y1:t) is iG(a(i)

t , b
(i)
t ) with mean and vari-

ance as

E(Σ|x(i)
0:t, y1:t) =

b
(i)
t

(a(i)
t − 1)

(for a
(i)
t > 1)(28)

Var(Σ|x(i)
0:t, y1:t) =

(b(i)
t )2

(a(i)
t − 1)2(a(i)

t − 2)

(for a
(i)
t > 2). (29)

Then the mean and variance for the posterior of Σ are
given by

E(Σ|y1:t) ≈
N∑

i=1

E(Σ|x(i)
0:t, y1:t)ω

(i)
t (30)

Var(Σ|y1:t) ≈
N∑

i=1

ω
(i)
t

{
Var(Σ|x(i)

0:t, y1:t) +

+
{
E(Σ|x(i)

0:t, y1:t)− E(Σ|y1:t)
}2

}
.(31)
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